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IMPLICIT SPACECRAFT GYRO CALIBRATION 

Richard R. Harmant Itzhack Y. Bar-Itzhack' 

This paper presents an implicit algorithm for spacecraft onboard instrument 
calibration, particularly to onboard gyro calibration. This work is an extension of 
previous work that was done where an explicit gyro calibration algorithm was 
applied to the AQUA spacecraft gyros. The algorithm presented in this paper 
was tested using simulated data and real data that were downloaded from the 
Microwave Anisotropy Probe (MAP) spacecraft. The calibration tests gave very 
good results. A comparison between the use of the implicit calibration algorithm 
used here with the explicit algorithm used for AQUA spacecraft indicates that 
both provide an excellent estimation of the gyro calibration parameters with 
similar accuracies. 
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I. INTRODUCTION 

Previous high fidelity onboard attitude algorithms estimated only the spacecraft 

attitude and gyro bias. The desire to promote spacecraft and ground autonomy and 

improvements in onboard computing power has spurred development of more 

sophisticated calibration algorithms. Namely, there is a desire to provide for sensor 

calibration through calibration parameter estimation onboard the spacecraft as well as 

autonomous estimation on the ground. 

Gyro calibration is a particularly challenging area of research. There are a variety 

of gyro devices available for any prospective mission ranging from inexpensive, low 

fidelity gyros with potentially unstable scale factors, to much more expensive, extremely 

stable high fidelity units. 

Calibration involves two steps. In the first step the instrument error parameters 

are estimated. During the second step those errors are continuously removed from the 

gyro readings. There are two approaches to the problem of estimating gyro error 

parameters. The approach used in the past at the NASA Goddard Flight Dynamics 

Analysis Branch treated the gyro outputs as angular rate measurements, which are 

compared to an estimated angular rate. However, this approach requires the knowledge of 

the angular rate. In the past' the estimated angular rate was computed in a rather 

simplistic way assuming that the rate was constant. To avoid this restriction an algorithm 

was developed2 where the estimated angular rate was derived using a Kalman filter (KF) 

whose input could be any kind of attitude measurement. Therefore the angular rate 

experienced by the SC could be continuously changing and yet a good estimate of the 
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rate, necessary for calibration, could be obtained. This approach was named the explicit 

approach. It is described in Fig. 1. Actually, the tasks of the Rate Estimator and the 

Calibration-Parameter Estimator were done by a single augmented-state KF algorithm. 
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Fig. 1 : Explicit Estimation of the Calibration Parameters. 
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In the classical approach to gyro calibration the gyro outputs are used to maintain 

or compute body orientation rather than being used as measurements in the context of 

filtering. In inertial navigation, for example3, gyro errors cause erroneous computation of 

velocity and position; then when the latter are compared to measured velocity and 

position, a great portion of the computed velocity and position errors can be determined. 

The latter errors are then fed into a Kalman filter (KF) that uses the INS error model to 

infer the gyro errors. Similarly, when applying the classical approach to spacecraft (SC) 

attitude determination, the gyro outputs are used to propagate the attitude. Attitude 

measurements are then used to determine the attitude errors, coupled with a KF, provides 

an indication of the gyro errors. This approach, which we name the implicit approach, is 

described in block diagrams in Fig. 2. Similar to the explicit approach, here too the 

Attitude Estimation function and the Calibration-Parameter Estimation are performed by 

a single augmented-state KF algorithm. 
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it was presented in Ref. 2. The work reported in the present paper is a follow up on the 

calibration method presented in Ref. 2. The calibration algorithm presented in this work, 

though, is an implicit calibration algorithm, derived here for a standard gyro triad whose 

sensitive axes are aligned with the SC body axes rather than the AQUA spacecraft case of 

Ref. 2. The main purpose of the present work is to compare the results obtained using the 

explicit approach with that obtained when using the present implicit approach. 

In the present work the implicit approach was applied to the gyro package of the 

Microwave Anisotropy Probe (MAP) satellite. The latter consists of two two-axis gyros, 

which are given the task of measuring the three components (with one redundant axis) of 

the SC angular velocity vector resolved in the body Cartesian coordinates. 

In the next section the gyro error model is derived. Section 111 presents the 

implicit approach algorithm for computing the calibration parameters. Section IV 

presents the compensation procedure that needs to take place to complete the calibration 

process. In section V the simulation and flight results are presented, and finally in Section 

VI, the conclusions are presented. 
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11. GYRO ERROR MODEL 

The gyro errors that are considered in this work are: misalignment, scale factor 

error, and bias (constant drift rate). The gyro error model is a linear model, which 

associates small error sources to the gyro outputs. Due to the linearity of the model we 

can compute the contribution of each error source independently and then sum up all the 

contributions into one linear model. We start the description of the error model, by 

deriving the expression for the gyro misalignments. 

11.1 Misalignment Model 

The assumed direction of the sensitive axis of gyro x, which is one of the three gyro axes, 

is presented in Fig. 3. The body coordinate axes are also presented and are denoted by 

X, Y, and Z. The orientation of this gyro is expressed by a vector of unit length in the 

Assumed 
(nominal) 
Direction of 

I' \ Actual 
x, 0, Direction of 

Gyro X 

Fig. 3: Misalignment definition of the x-gyro sensitive axis. 
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direction of the gyro sensitive axis. The resulting rate error due to misalignment of all 

three gyros is: 

o , o z o  0 0 0 
0 0 ox o, 0 0 

0 0 0 o o , o ,  

where mij are the misalignment angles, assumed to be small and 

velocity components measured by the gyros. 

are the angular 

Let, 
o , o , o  0 0 0 

0 o x o ,  0 0 
0 0 0 o o x o y  

and 

Then Eq. (1) can be rewritten as, 
Am" =Qmm 
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11.2 Scale Factor Error Model 

As mentioned, another error source that causes the difference between the correct 

value of the actual rates and their measurements are the scale factor errors. The error 

model for the scale factor error is simply 

dok = 

where the superscript k denotes that this error is caused by gyro scale factor errors, and k i  

is the scale factor error of gyro i, i = x, y, z . Eq. (5) can be written as follows 

Define 

and 

then Eq. (6) can be written as 

11.3 Bias Model 

0 2 j 
kT=[kx k, k z ]  

Amk =Qkk 

The bias error model is quite simple and is given by 

Amb =I,b 
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where 

b =  

and x, y, z are the corresponding gyro-axes. 

11.4 The Augmented Gyro Error Model 

The total gyro error is the sum of all the error discussed before; namely, 

misalignment, scale factor and bias errors; that is 

Am = Am'" + Amk + Amb ( 9 4  

or using Eqs. (4), (7.c), and (8) 

Am = R"m + Rkk + 13b 

The last equation can be written in the following form 

Define H(m) as follows 

also let 

Am=[R"' Rk 13] r"l k 

l b l  

H(m)=[Rm Rk 13] 

then Eq. (9.c) can be written as 

ACU =H(m)x (9.0 
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111. CALIBRATION-PARAMETERS ESTIMATION 

1II.a The Dynamics Model 

Our goal now is to estimate x ,  and for that we need to know how x influences 

the attitude estimation. The true quaternion solves the differential equation 

1 q=-s2q 
2 

where 

-0, 
O X 1  

1-ax -ay -0, 0 

The measured angular rate, a,,, , contains the gyro error, Am , thus 

consequently 
O, = o + A o  

R=S2,-6* 

(1 0.a) 

(lO.b) 

(1 0.c) 

(1 0.d) 

where R, as well as 6Q are in the format of Eq. (lO.b). Using the last equation, Eq. 

(1 0.a) can be written as: 

1 1 
q =-R,q--6Rq 2 2 

which can be written as 

where 

and Q is given by 
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Using Eq. (9.0 in Eq. (I 0.0 yields 

1 1 
2 2 

4 =-R,,q --QH(a)x 

(lO.h) 

(1 0.i) 

Since we do not know o , as a common practice, we use instead the measured angular 

rate, a,, . Equation (1 0.i) becomes 

1 1 
2 2 

4 = - QZ,q - - QH(o,)x 

Because x is a constant vector we can write 

i = O  

Augmenting the last two equations yields 

(1 1.a) 

(1l.b) 

(1l.C) 

where wq and w, are dynamics noise terms. Initially the matrix Q is evaluated using q, . 

When the attitude converges it is better to use q ,  the estimated quaternion. Similarly, 

initially we use a, to evaluate H I  As the estimate of x converges, we compensate the 

gyro readings (as shown in the next section), then compensated gyro readings are closer 

to o . Therefore we can use the compensated angular rate, & , in H of Eq. (1 1 .c). 

1II.b Measurement Model 

For quaternions the measurement model becomes: 
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0 4 X L  I[ q]+ 
X 

q, = [ 1 4 x 4  

With these two models, a KF can be applied to estimate the calibration parameters 

that constitute x . The logic behind the filter that uses these models is as follows. From 

Eq. (1 1 .a) (which is the first row of Eq. 11 .c), when we use the contaminated gyro 

readings to propagate q in Eq. (1 l.c), the propagated quaternion is correct as long as x is 

correct. However, when the estimate of x is incorrect, the propagated q is erroneous. The 

KF compares this q with the measured quaternion, q, and the difference (residual) 

updates the estimate of x to bring q in Eq. (1 2) to the correct value. Eventually, when the 

KF compares q with q, , we only get the white measurement noise, which means that the 

filter reaches a steady state and settles on the best estimate of the calibration parameters. 

IV. COMPENSATION 

To complete the calibration process we need to perform its second stage; namely, 

compensating the gyro readings with the estimated errors. From Eq. (9.c) we obtain 

m 

Ah=[n"' L2' I,] [i] 
Since 

om=@ +Ao 

(1 3) 

(14.a) 

An estimate ib of o is computed as follows 

bj=~), -Ab (14.b) 

then using Eq. (1 3) in the last equation yields the final gyro compensation formula 
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V. RESULTS 

m =  

The algorithm was tested using both simulated telemetry and MAP flight data. 

-0.01 
+0.01 
-0.01 
+o.o 1 

+0.001745 
radians 

+0.005236 

First, Autonomous Star Tracker (AST) and gyro data were simulated. The AST provides 

the measured quaternion, q,, . The modeled error values were: 

Each sensor provided data at a 1 Hz rate. The attitude profile started with an inertial 

period of 200 seconds, which was used to estimate the gyro biases. This inertial period 

was followed by three sequential 0.1 deg/sec maneuvers about the x, y, and z-axes, 

respectively, lasting 200 seconds each. The run length was 1400 seconds. The gyro 

states were estimated well without performing any tuning on the filter parameters. The 

resulting gyro calibration percentage errors, (true-estimated)* 1 OO%, after this simulation 

were 

-0.889001 

10.360264 

-1.201588 

1.772927 me = /  

-3.2 15 109 i 8.809881 

-2.7 1 2 1 3 6 

-2.330571 -0.000075 
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The time history of the gyro misalignment estimates is shown in Fig. 4. The thick line 

represents the true value and the thin line represents the estimated value. 
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Figure 4: Gyro misalignment estimation versus the true value (the straight line across 
depicts the true value). 

The time history of the gyro scale factors is shown in Fig. 5. Again the thick line 

represents the true value and the thin line represents the estimated value. 
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Computed and True Scale Factors 
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Figure 5:  Gyro scale factor estimation versus the true value (the straight line across 
depicts the true value). 

Finally, the time history of the gyro bias estimation is shown in Fig. 6 
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Computed and True Gyro Bias 
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Figure 6: Gyro Bias Estimation versus the true value (the straight line across depicts the 
true value). 

Next, the algorithm was tested using MAP flight data. Shortly after MAP'S insertion into 

the transfer orbit, a series of gyro calibration maneuvers were performed over a 6-hour 

period using two ASTs and two Digital Sun Sensors (DSSs). The only MAP gyro data 

readily available for this analysis had already been compensated for the latest calibration 

parameters. Also, that parameter estimation used all of the above MAP sensors. For this 

analysis, only one AST and the compensated gyro data was available. For comparison 

purposes, the single AST and gyro data were processed though the operational system to 

estimate any residual gyro calibration parameters. Those results were used as the truth 

model. Those truth parameters are: 
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m =  

0.001024 
0.000006 
-0.000978 
-0.000006 
-0.000003 
-0.000013 

radians k =  
0.000 13 9 
-0.004432 
0.000086 

b =  
0.000000 

-0.000000 

As can be seen, the parameters are relatively small. The gyro calibration data consists of 

22000 seconds worth of data. The maneuvers consisted of 22 and 44 degree maneuvers 

each about the x and y spacecraft axes. The final maneuvers of +/- 90 degrees were about 

the z-axis. The rate history of the maneuvers that were performed for the MAP gyro 

calibration is shown in Fig. 10. The same compensated gyro data and AST data was 

input into the gyro calibration algorithm presented here. Using this algorithm the gyro 

calibration results were: 

m =  

0.001 176 
0.000002 
-0.001061 
-0.000002 
-0.000001 
-0.000002 

radians k = 

0.000000 
-0.002681 1 b =  
0.000000 

0.000000 
-0.000000 
0.000000 

radianslsec 

The misalignment estimation performance is shown in Fig. 7. The scale factor 

performance is shown in Fig. 8 and the bias estimation performance is shown in Fig. 9. 

Again, the thick line is the ‘truth’ and the thin line is the ‘estimate’. The performance 

was excellent overall. However, the y-axis scale factor proved to be the most 

challenging. The boresight of the AST is parallel to the body y-axis. Obviously the AST 

accuracy is least about its boresight, which, in this case, influenced the y-axis gyro scale 

factor estimation. 
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Figure 7: Gyro misalignment estimation versus the true value (the straight line across 
depicts the true value). 
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Figure 8: Gyro scale factor estimation versus the true value (the straight line across 
depicts the true value). 
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Figure 10: Computed SC rates during the gyro alignment maneuvers. 

VII. CONCLUSIONS 

In this paper we presented an implicit method of gyro calibration, for the standard 

orthogonal gyro axes configuration, using a Kalman filter. The filter algorithm used the 

gyro outputs to supply data for the quaternion kinematics equation. The gyro 

misalignments, scale factors, and biases were estimated. This method was first tested 

with simulated data. Upon successful testing with simulated data, the algorithm was 

tested with MAP flight data. This flight data testing was also successful in estimating the 

gyro calibration parameters. The size of the errors using the implicit calibration approach 

was compared to the results presented in the literature for the explicit approach applied to 
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the AQUA SC. Both approaches provide excellent estimates of the gyro calibration 

parameters with similar accuracies. However, the implicit approach is less 

computationally burdensome than the explicit approach, since Euler's equation is not 

integrated, and actuator data is not required. 

Future work will involve testing the algorithm with other spacecraft data and to 

incorporate vector measurements in addition to the quaternion measurement used in this 

analysis. 
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